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INTERACTION BETWEEN WAVES AND HANGING HIGHLY FLEXIBLE KELP BLADES 

Long-Huan Zhu1, Kimberly Huguenard2, and David Fredriksson3 

The interaction between waves and flexible blades has drawn recent attention because of the capacity of nature-based 

infrastructure, such as aquatic vegetation and kelp, to attenuate waves. In this study, a new numerical model was 

developed to study the wave-blade interaction for both bottom-fixed and suspended blades. The dynamics of the blades 

simulated by a cable model were coupled with OpenFOAM®-based wave model IHFoam with the immersed boundary 

method. The results showed that the distribution of the blade-induced vortices was asymmetric with more vortices 

upstream for the single bottom-fixed blade while more vortices downstream for the single suspended blade. For both 

submerged and suspended canopies, the vortex distribution is also asymmetric. More vortices concentrate upstream for 

the submerged canopy. For a suspended canopy, more vortices concentrate upstream and below the bottom of the 

suspended canopy. Yet near the surface above the suspended canopy, more vortices concentrate downstream. 

Understanding the distribution of vortices is important for predicting the sediment transport and nutrient distribution. 

Keywords: wave vegetation interaction; flexible blade dynamics; immersed boundary method; Open Field Operation 

And Manipulation (OpenFOAM®); computational fluid dynamics (CFD) 

INTRODUCTION 

The wave attenuation capacity of vegetation has drawn recent attention due to its potential to serve 

as an ecological alternative to hardened coastal protection. Most previous studies focused on the effects 

of bottom aquatic plants such as seagrasses, wetlands, mangroves, and salt marshes. Only until recently 

have researchers considered the impacts of near-surface aquaculture structures such as kelp. The wave-

attenuation capacity of a suspended canopy was investigated by Zhu and Zou (2017) using a three-layer 

analytical model without considering the flexibility of the blade, which overestimated wave decay. The 

results did showed that suspended canopies damped intermediate and deep-water waves more 

significantly than submerged canopies. Using a non-hydrostatic model called SWASH (Simulating 

WAves till SHore), Chen et al. (2018) investigated the effects of suspended and floating canopies on 

wave attenuation as well as wave-canopy induced currents. Their results showed that the analytical 

solution by Zhu and Zou (2017) was in good agreement with the numerical results for small wave height 

decay rate. For a larger wave height rate, the analytical solution by Zhu and Zou (2017) predicted a larger 

wave height decay.  

Additional work by Alben et al. (2002) showed that interaction between waves and flexible blades 

needs to be considered since blade deformation reduces drag force resulting in a weaker wave attenuation 

capacity (Mullarney and Henderson, 2010). The wave-induced dynamics of a flexible bottom-fixed blade 

was investigated by Luhar and Nepf (2016) using experimental and numerical methods. Luhar et al. 

(2017) examined wave attenuation by flexible blades by representing compliance as a shortened effective 

length.  

Building on this body of work, the objective of this paper was to develop a numerical model to study 

the wave-blade interaction for both bottom-fixed and suspended blades. The dynamics of the flexible 

blades were built as a cable model and coupled with the OpenFoam®-based wave model IHFoam 

applying the immersed boundary method. The coupled model was compared with experiments done by 

Luhar and Nepf (2016). The dynamic model was used to investigate wave-blade interactions by analyzing 

the distribution of vortices for both bottom-fixed and suspended blades as well as submerged and 

suspended canopies.  

METHODOLOGY 

Cable model for blade dynamics 

The swaying nature of kelp blades can be simulated using a cable model (Howell, 1992; 

Trianrafyllou, 1994) since it incorporates large deformations, as shown in Fig 1. In this 2D model, the 

fixed global Cartesian reference frame (𝑥, 𝑧) with the origin (𝑂) at the bottom end of the blade is defined 

in Fig. 1(a), where 𝑥 and 𝑧 indicate the horizontal and vertical directions, respectively. To derive the 

governing equations representing the blade dynamics, a Lagrangian coordinate system (𝑡, �⃗⃗�) along the 

blade length is used, where 𝑡 and �⃗⃗� indicate the blade-parallel and blade-normal directions, respectively. 

In this model, the twisting motion of the blade neglected. The velocity of the blade segment 𝑑𝑠 is denoted 

as �⃗⃗� = (𝑢, 𝑣), where 𝑢  and 𝑣  are the components in the blade-parallel and blade-normal directions, 
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respectively. The distance along the length of the blade (𝑙) from the origin is 𝑠. The local bending angle 

of the blade relative to the vertical direction is 𝜙, where 𝜙 = 0 denotes an upright posture.  

 
Figure 1. Schematic diagram for the coordinate systems and the free-body diagram. (a) Fixed global Cartesian 

reference frame (𝒙, 𝒛) and the local Lagrangian coordinate system (�⃗�, �⃗⃗⃗�) along the blade length (𝒔), where �⃗� and 

�⃗⃗⃗� indicate blade-parallel and blade-normal directions. The thin gray line denotes the flexible blade and the thin 
arrows denote axes. (b) A free-body diagram for one segment of the flexible blade 𝒅𝒔 used in the wave-
vegetation model. The thick gray line denotes the blade segment 𝒅𝒔 with an angle 𝝓 with vertical axis and the 
thick arrows denote forces. The internal forces include the effective tension (𝑻), shear (𝑸), and the external 

forces per unit blade length include the gravity (𝒇𝑮), buoyancy (𝒇𝑩), and hydrodynamic force �⃗⃗� = (𝒇𝒙, 𝒇𝒛). 

The blade dynamics are governed by the equilibrium of the internal and external forces, as shown in 

Fig. 1(b). The internal forces include the effective tension (𝑇) in the blade-parallel direction and shear 

(𝑄) in the blade-normal direction, respectively. The external forces per unit blade length consist of the 

buoyancy ( 𝑓𝐵 ), gravity ( 𝑓𝐺 ), and hydrodynamic forces 𝑓 = (𝑓𝑥, 𝑓𝑧) . Based on the equilibrium of 

momentum, the govern equations are  

  𝜌𝑣𝑏𝑑 (
𝜕𝑢

𝜕 𝑡
+ 𝑣

𝜕 𝜙

𝜕 𝑡
) = 𝑄

𝜕𝜙

𝜕𝑠
+

𝜕𝑇

𝜕𝑠
+ (𝑓𝑧 − 𝑓𝐺) cos 𝜙 + 𝑓𝑥 sin 𝜙  (1) 

and 

  𝜌𝑣𝑏𝑑 (
𝜕𝑣

𝜕𝑡
− 𝑢

𝜕𝜙

𝜕𝑡
) =

𝜕𝑄

𝜕𝑠
− 𝑇

𝜕𝜙

𝜕𝑠
+ (𝑓𝑧 − 𝑓𝐺) sin 𝜙 − 𝑓𝑥 cos 𝜙,  (2) 

where 𝜌𝑣 is the blade density, 𝑏 is the blade width, and 𝑑 is the blade thickness. The blade is assumed to 

be a linear material such that shear (𝑄) is proportional to curvature: 

    𝑄 = 𝐸𝐼
𝜕2𝜙

𝜕𝑠2 ,     (3) 

where 𝐼 is the second area moment of the blade cross-section and 𝐸 is the elastic modulus. To satisfy 

geometric continuity of the segments, the compatibility relations are applied such that 

    
𝜕𝑢

𝜕𝑠
+ 𝑣

𝜕𝜙

𝜕𝑠
−

1

𝐸𝑏𝑑

𝜕𝑇

𝜕𝑡
= 0,    (4) 

and 

    
𝜕𝑣

𝜕𝑠
− 𝑢

𝜕𝜙

𝜕𝑠
+

𝜕𝜙

𝜕𝑡
= 0.    (5) 

The boundary conditions for the fixed end are given by 

    𝑢 = 0, 𝑣 = 0, 𝜙 = 0    (6) 

and for the free end: 

    𝑇 = 0, 
𝜕𝜙

𝜕𝑠
= 0, 

𝜕2𝜙

𝜕𝑠2 = 0.    (7) 

For bottom-rooted vegetation, the bottom end of the blade is fixed and the top end is free. While for the 

hanging kelp blade, the bottom end of the blade is free and the top end is fixed. 

OpenFOAM®-based wave model IHFoam 

The interFoam solver incorporating the Volume of Fluid (VOF) method for multiphase flow built in 

OpenFOAM® is used to simulate the water surface waves. Following Higuera et al. (2013) and Chen et 

al. (2017), the governing equations for the fluid domain are given by 
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     𝛻 ∙ �⃗⃗⃗� = 0,    (8) 

 
𝜕𝜌�⃗⃗⃗�

𝜕𝑡
+ 𝛻 ∙ (𝜌�⃗⃗⃗��⃗⃗⃗�) − 𝛻 ∙ (𝜇𝑒𝑓𝑓𝛻�⃗⃗⃗�) = −𝛻𝑝∗ − �⃗� ∙ �⃗�𝛻𝜌 + 𝛻�⃗⃗⃗� ∙ 𝛻𝜇𝑒𝑓𝑓 − �⃗�, (9) 

and 

   
𝜕𝛼

𝜕𝑡
+ 𝛻 ∙ (�⃗⃗⃗� 𝛼) + 𝛻 ∙ (𝑈𝐶

⃗⃗ ⃗⃗ ⃗ 𝛼(1 − 𝛼)) = 0,   (10) 

where �⃗⃗⃗� is the fluid velocity vector on the fluid domain with Euler mesh, 𝜌 is the fluid density, 𝑝∗ is the 

pseudo-dynamic pressure, �⃗�  is the gravitational acceleration, �⃗�  is the position vector, 𝜇𝑒𝑓𝑓  is the 

effective dynamic viscosity, �⃗� is the blade-induced boundary forces spreading to the Euler mesh, and 𝛼 

is the quantity of water per unit of volume at each cell, |𝑈𝐶
⃗⃗ ⃗⃗ ⃗| = min[𝑐𝛼|�⃗⃗⃗�|, max(|�⃗⃗⃗�|)], and 𝑐𝛼 can be 

specified by user with default value of 1. The open-source package IHFoam, based on OpenFOAM 

(Higuera et al., 2013; Chen et al., 2017), was used to generate and absorb waves at the inlet and outlet 

boundaries. 

Immersed boundary method for wave-blade interaction 

The immersed boundary method (Peskin, 2002) is used to represent the coupling of waves and 

blades. According to the immersed boundary method, a no-slip boundary condition is applied at the 

interface between the fluid and structure by adding a force (source) term to the momentum equations in 

the fluid domain (Eq. 9). With this technique, the fluid mesh near the interface does not need to adapt to 

the shape of the structure. Therefore, the fluid mesh can be built as a structured Cartesian grid, increasing 

the computational efficiency and stability.  

The explicit scheme for the weak coupling of the waves and blade dynamics is shown in Fig. 2. For  

 
Figure 2. Flow chart of the explicit scheme for the weak coupling of waves and blade dynamics. The superscript 

𝒏 indicates the 𝒏th time step. For the computation in the fluid domain, 𝒑 is the fluid pressure, �⃗⃗⃗� is the fluid velocity 

vector, and �⃗⃗⃗� is the boundary force spreading to the fluid domain with spreading operator 𝓢. According PISO 

algorithm, �⃗⃗⃗�∗ is the first predictor of the fluid velocity vector and �⃗⃗⃗�∗∗ is the second predictor of the fluid velocity 
vector. For the computation of blade dynamics, �⃗⃗⃗� is the blade position vector and �⃗⃗⃗� is the blade velocity vector, 

and �⃗⃗� is the hydrodynamic force acting on the blade mesh. The interpolation of the fluid velocity on the blade 
mesh is �⃗⃗⃗�∗ calculated with interpolation operator 𝓘. 

weak coupling, the iteration of computation for the blade is not implemented. At the 𝑛th time step, the 

new velocity (�⃗⃗�𝑛+1) and position (�⃗�𝑛+1) of the blade at (𝑛 + 1)th time step is obtained by Eq. 1 through 

Eq. 7 based on the cable model. Pressure-Implicit with Splitting of Operators (PISO) algorithm is used 

in the computation in the fluid domain with two predictor velocity vectors. The first predictor velocity 

Blade dynamics 

(Cable model) 

Fluid-structure interaction 

(Immersed boundary method) 

Waves 

(IHFoam/OpenFOAM®) 

𝑓𝑛 , 𝑥𝑛, �⃗⃗�𝑛 

 𝑥𝑛+1, �⃗⃗�𝑛+1 

�⃗⃗�∗ = ℐ(�⃗⃗⃗�∗, 𝑥𝑛+1 ) 

𝑓𝑛+1 =
�⃗⃗�𝑛+1 − �⃗⃗�∗

Δ𝑡
 

�⃗⃗⃗�∗∗ 

�⃗�𝑛+1 = 𝒮(𝑓𝑛+1, 𝑥𝑛+1) 

𝑝𝑛+1, �⃗⃗⃗�𝑛+1 

𝑝𝑛 , �⃗⃗⃗�𝑛 

�⃗⃗⃗�∗ 

PISO 
loop 
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vector (�⃗⃗⃗�∗) of the fluid domain is solved by OpenFOAM®. The interpolation of the first predictor velocity 

vector (�⃗⃗⃗�∗, Euler mesh) on the blade position (�⃗�𝑛, Lagrangian points) at 𝑛th time step can be obtained 

using the interpolation operator (ℐ) and given by 

     �⃗⃗�∗ = ℐ( �⃗⃗⃗�∗, �⃗�𝑛+1),    (11) 

where the calculation for the interpolation operator (ℐ) is given by Constant et al. (2017) and Riahi et al. 

(2018). Then the force term at the Lagrangian points at (𝑛 + 1)th time step can be obtained: 

     𝑓⃗⃗⃗ ⃗𝑛+1 =
 �⃗⃗⃗�𝑛+1− �⃗⃗⃗�∗

𝛥𝑡
,     (12) 

where the time step is Δt. Eq. 12 shows the no-slip condition at the interface between the fluid and the 

blade. The force term on Lagrangian points are spread to the enclosed Euler mesh in order to obtain the 

force term on Euler mesh, which is expressed as 

    �⃗�𝑛+1 = 𝒮(𝑓𝑛+1, �⃗�𝑛+1),    (13) 

where the spreading operator (𝒮) is the inverse calculation of the interpolation operator. Implementing 

the force term in the fluid momentum equation yields the second predictor velocity field (�⃗⃗⃗�∗∗). With this 

updated fluid velocity, the computation within the fluid domain returns back to the step of calculating 

the first predictor velocity vector again to continue the PISO loop until the fluid velocity reaches 

convergence. Finally, the pressure (𝑝𝑛+1) and the velocity field (�⃗⃗⃗�𝑛+1) of the fluid are obtained. 

DATA COMPARISON 

Since there is no published data for the interaction between waves and hanging flexible blades, the 

coupled model is compared with the results of experiments conducted by Luhar and Nepf (2016) for 

bottom-fixed blades. The experiments were performed in a 24 m × 38 cm × 60 cm wave flume with the 

experiment setup shown in Fig. 3. An 8 cm high acrylic box was installed in the middle of the flume to 

mount the load cell which was attached to the bottom of the blade to measure the horizontal force. The 

blade was fixed at 4 cm above the acrylic box by a holder. With the acrylic box, the effective depth of 

the tank was 30 cm. Waves with a period of 2 second waves with an amplitude of 4 cm were used during 

the experiments. The wave orbital velocity at 15 cm ahead of the blade is measured by with a PIV 

(particle image velocimetry) system. The length of the model blade was 20 cm, the width was 2 cm, and 

the thickness was 0.4 mm. The density of the blade was 950 kg/m3. The elastic modulus of the blade was 

500 kPa.  

 
Figure 3. Schematic diagram for the experimental setup. The blade (gray line) is located on the top of the 
acrylic box. The still water line (SWL) is 38 cm above the bottom, which is also 30 cm above the acrylic box. 
The investigated wave orbital velocities at position 1 (3.5 m ahead the blade) and position 2 (15 cm ahead the 
blade) are 32 cm above the bottom. Velocity 2 was measured with a PIV (particle image velocimetry) system 
by Luhar and Nepft (2016. The waves are propagated from left to right. 

The computational domain was created to be12 m long (3.68 wavelengths) and 0.53 m high. The 

smallest grid size was set at 0.002 m × 0.002 m for the mesh near the blade. The mesh size for the blade 

was also 0.002 m. The grid size was increased gradually to the edge of the computational domain and 

the number of cells is 370780. 

Stokes Second Order wave theory was applied with 𝑘𝑎 = 0.0771 and 𝑘ℎ = 0.5786, where 𝑘 was 

the wave number, 𝑎 was the wave amplitude, and ℎ was the water depth. Once the simulations were 

complete, wave orbital velocities at two points were measured including: (1) 3.5 m ahead the blade and 

32 cm above the bottom and (2) 15 cm ahead the blade and at the same level (shown in Fig.3). The 

comparison between the time series of the wave orbital velocities predicted by the coupled model and 

Stokes Second Order wave theory, as well as the measured data, are shown in Fig. 4. The predicted wave 

orbital velocity 3.5 m ahead the blade follows closely with the wave theory, except for a small 
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underestimation for the horizontal component at the wave trough, as shown in Fig. 4(a). For the wave 

orbital velocity near the blade (15 cm ahead), the underestimation of the horizontal component at wave 

trough increases slightly, while the predicted vertical component is smaller than the wave theory at the 

wave crest. The modeled horizontal component is in good agreement with the data. However, the 

predicted vertical component is larger than the measured data. 

 
Figure 4. Wave orbital velocities at the points (a) 3.5 m ahead the blade and (b) 15 cm ahead the blade and 32 
cm above the bottom without the acrylic box (see Fig. 3). The red lines denote the horizontal components while 
the blue lines denote the vertical components. The solid lines denote the predictions by the present model, 
the dotted lines denote the results based on Stokes II wave theory, and the dashed lines denote the measured 
data by Luhar and Nepf (2016) with PIV system. 

 
Figure 5. Comparisons for the blade postures and horizontal force over a wave period. (a-l) The observed 
postures in the experiment are denoted by dotted black lines, the postures predicted by Luhar and Nepf (2016) 
are denoted by dashed purple lines, and the predictions by present model are denoted by solid green lines. 
(m) The measured horizontal force at the bottom end of the blade is denoted by black dotted line, the predicted 
force by Luhar & Nepf (2016) is denoted by purple dashed line, and the prediction by present model is denoted 
by solid green line. The shaded region represents estimated uncertainty in the experiments by Luhar and Nepf 
(2016). 
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The predicted postures of the blade and the total horizontal force were compared with the 

experimental data and the predictions by Luhar and Nepf (2016), as shown in Figure 5. The predicted 

blade postures agree with the observed postures for the first half wave period (Fig. 5a-g), except for 

differences near the blade tip. For the second half of wave period (Fig. 5h-l), the blade postures are 

underestimated. This is also expressed in the force comparison (Fig. 5m). The predicted force is in good 

agreement with the data from 𝑡 = 0.4 s to 𝑡 = 1.4 s, but is underestimated for the other wave phases. 

With a qualitative comparison with the experiments, the coupled model was then used to investigate the 

wave blade interactions. 

RESULTS AND DISCUSSION 

The coupled model was used to study the interaction between waves and both bottom-fixed and 

suspended blades. The simulated wave characteristics and material properties were the same as in Luhar 

and Nepf (2016). The simulated water depth was 40 cm and the blade length was 10 cm. For the 

suspended blade case, the top end of the blade was fixed at 𝑧 = 0.3 m and the bottom end was free. The 

wave-blade interaction was first investigated for the case of a single blade and then followed with 

canopies.  

The most significant process created by the wave-blade interaction was the vortex shedding shown 

in Fig. 6. The vortex develops at the ends of the blade and sheds following the swaying motion of the 

blade. Without current, the vortex oscillates following the wave orbital motion. The vortex decays 

completely when it travels about a quarter wavelength (0.9 m). Therefore, the vortex concentrates near 

the blade where the vortex was generated. The vortex distribution is asymmetric with the vertical blade 

in the horizontal direction. More vortices are on the right side of the bottom-fixed blade following the 

direction of wave propagation while more vortices on the left side of the suspended blade in the opposite 

direction of the wave propagation. The asymmetric distribution of vortices may be related to the 

asymmetric swaying motion of the blade, yet this remains to be fully understood. 

  
Figure 6. Vorticity contours near a bottom-fixed blade (left column) and a hanging blade (right column) over a 
wave period. The wave surface is denoted by purple lines near the still water line at 𝒛 = 𝟎. 𝟒 m. Four wave 
phases including wave trough, node (following with crest), crest, node (following with trough) are shown from 
the top rows to the bottom rows. The blades are denoted by black lines. The positive sign of the vorticity 
indicates the vortex rotates anticlockwise while the negative sign indicates the ration is clockwise. 
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The results for the bottom-fixed and suspended canopies are shown in Fig. 7. Similar to a single 

blade, the vortices develop at the ends of the blades and move following blade motion and wave orbital 

motion. For the case of a submerged canopy with bottom-fixed blades, the vortices travel upward to the 

surface. The distribution of the vortices in the horizontal direction is asymmetric with more vortices at 

the leading edge of the canopy, i.e., in the opposite direction of the wave propagation, which is different 

from the case of a single blade. For the suspended canopy, the vortices develop at both top and bottom 

ends. However, the distribution of the vortices is more complicated, with more vortices at the trailing 

edge of the suspended canopy near the surface above the suspended canopy while more vortices at the 

leading edge below the bottom of the suspended canopy. One possible reason is the wave and canopy 

induced currents, which flow in the direction of wave propagation on the top of the bottom-fixed and 

suspended canopies, while in the opposite direction at the bottom of suspended canopies (Chen et al., 

2018). This is consistent with the vorticity distribution for suspended canopies, but not consistent for 

vortices induced by submerged canopies, where the vortices concentrate at the leading edge while the 

current flow to downstream. The discrepancy may be caused by the blade swaying motion, which also 

remains to be fully understood. 

  
Figure 7. Vorticity contours near a group of bottom-fixed blades (left column) and hanging blades (right 
column) over a wave period. The wave surface is denoted by purple lines near the still water line at 𝒛 = 𝟎. 𝟒 m. 
Four wave phases including wave trough, node (following with crest), crest, node (following with trough) are 
shown from the top rows to the bottom rows. The 10 cm-long blades are denoted by black lines. 

SUMMARY 

In this study, a numerical model was developed to study the interaction between waves and both 

flexible bottom-fixed and suspended blades as well as submerged and suspended canopies. The dynamics 

of the blades were simulated by a cable model, which is coupled with OpenFOAM ®-based wave model 

IHFoam with the immersed boundary method. The results showed that the distribution of the blade-

induced vortices was asymmetric with more vortices in the wave propagation direction for a single 

bottom-fixed blade and more vortices in the opposite direction of wave propagation for a single 

suspended blade. For the case of a submerged canopy, the distribution of vortices was also asymmetric 

with more vortices were concentrated at the leading edge of the submerged canopy. While for a 

suspended canopy, more vortices were concentrated at the trailing edge of the suspended canopy near 

the surface. Near the bottom below the suspended canopy, more vortices were found at the leading edge 



 COASTAL ENGINEERING 2018 

 

8 

of the suspended canopy. The asymmetric distribution of the vortices may influence the nutrient 

distribution and sediment transport. These results also showed that the effects of blade motion on the 

vorticity distribution warrant further investigation. The improvement of the coupled model to 3D is 

desirable. 
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