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ABSTRACT 

 

A 3D consistent mass-based model, cable model, is proposed to simulate 

the large deflection of the culture line structure. The 3D model couples 

the components of the entire aquaculture system. The simulations are 

performed with results compared with published data for suspended 

blades in both steady and oscillatory flow. Dynamics of a kelp longline 

system are studied for tidal currents scenarios. Results show that the 

longline tension follows water level to the peak at high tide and sensitive 

to water level in high tide. The non-parallel currents could enhance the 

tension as well as the deflection of the longline system. 

 

KEY WORDS: Longline aquaculture systems; kelp; macroalgae 

model; cable dynamics. 

 

INTRODUCTION 

 

Longline aquaculture systems are often used for the grow out of both 

shellfish and macroalgae products in protected waters. As this sector of 

the industry grows, more exposed sites will be considered. Longline gear 

components, however, will need to be optimized to survive extreme 

wave and current conditions while minimizing costs at exposed sites. 

These aquaculture structures may also have potential for shore protection 

as a kind of a living breakwater (Zhu and Zou, 2017). In each of these 

applications, numerical modeling tools are necessary that represent the 

dominating fluid and aquaculture system interaction processes. To 

analyze the dynamics of a mussel longline system, Raman-Nair et al 

(2008) developed a 3D numerical model coupling the longline and 

mussel dropper components. The longline was modeled as a lumped 

mass and tension-only springs system with the attached mussel culture 

components modeled as rigid cylinders. Cheng et al. (2017) developed a 

2D numerical model for a kelp culture line modeled as a series of 

segments connected by hinges and springs to represent large deflections. 

A 2D consistent mass, cable model was proposed by Zhu et al. (2018) to 

simulate the dynamics of flexible kelp blades in waves. The results 

showed that the blade-induced vortices are asymmetric at both upstream 

and downstream positions of the flexible kelp model. The 2D models, 

however, are not able to simulate the dynamics of the longline system 

with non-parallel incident waves and currents because the motion of the 

culture line is 3D. Therefore, to build upon this work, the objectives of 

this paper are, (1) to propose a 3D form of the cable model to simulate 

the dynamics of the culture line, (2) incorporate hydrodynamic input for 

kelp blades, and (3) to couple the components of the entire aquaculture 

system based on the cable model. The coupled 3D model was then used 

to investigate the performance of a kelp longline system in tidal currents. 

 

METHODOLOGY 

 

Longline Configuration and Coordinate Systems 
 

Typical longline aquaculture systems consist of anchors, mooring lines, 

buoys and longline that incorporate aquaculture components (Fig. 1). 

The aquaculture components can include densely grown kelp or shellfish 

droppers. Each component of the aquaculture system can be represented 

as a slender structure and modeled as a flexible cable. Flexible cable 

models have been used to analyze the dynamics of low-tensioned slender 

structures such as steel cables (e.g., Howell, 1992; Trianrafyllou, 1994; 

Tjavaras et al., 1998), risers (Chatjigeorgiou, 2008), mooring lines (e.g., 

Li et al, 2018), and vegetation (Zhu et al., 2018). To apply the cable 

model for a longline aquaculture system, two coordinate systems are 

employed including: (1) the global Cartesian coordinate system (𝑖,̂ 𝑗̂, �̂�) 

and (2) the local Lagrangian coordinate system (�̂�, �̂�, �̂�) with �̂� direction 

along the slender structure and moving with the structure.  

 

 
Fig. 1: Longline configuration and coordinate systems including the 

global Cartesian coordinate system (𝑖,̂ 𝑗̂, �̂�)  and a local Lagrangian 

coordinate system (�̂�, �̂�, �̂�).  

 

The cable model requires a rotation matrix (𝑪). The rotation matrix (𝑪) 

transforms variables between coordinate systems using the Euler 

principle rotation theorem with an angle (𝛼) about a unit vector 𝑙 =
[𝑙𝑥 𝑙𝑦 𝑙𝑧]𝑇 (Junkins and Turner, 1986). In the transformation, the four 

Euler parameters (𝛽 = [𝛽0 𝛽1 𝛽2 𝛽3]𝑇) are defined as 

 

𝛽 = [cos
𝛼

2
𝑙𝑥 sin

𝛼

2
𝑙𝑦 sin

𝛼

2
𝑙𝑧 sin

𝛼

2
]

𝑇
,                                               (1) 
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such that the rotation matrix can be written as 

 

𝑪 =  

[

𝛽0
2 + 𝛽1

2 − 𝛽2
2 − 𝛽3

2 2(𝛽1𝛽2 + 𝛽0𝛽3) 2(𝛽1𝛽3 − 𝛽0𝛽2)

2(𝛽1𝛽2 − 𝛽0𝛽3) 𝛽0
2 − 𝛽1

2 + 𝛽2
2 − 𝛽3

2 2(𝛽2𝛽3 + 𝛽0𝛽1)

2(𝛽1𝛽3 + 𝛽0𝛽2) 2(𝛽2𝛽3 − 𝛽0𝛽1) 𝛽0
2 − 𝛽1

2 − 𝛽2
2 + 𝛽3

2

].   (2) 

 

The dynamics of each slender structure is solved within local Lagrangian 

coordinate systems. To couple the aquaculture system components, the 

variables at each joint are transformed to the global coordinate system to 

establish boundary conditions. The aquaculture components (e.g., 

aggregate kelp blades, mussel droppers) are also modeled as slender 

structures. 

 

Governing Equations 

 

The dynamics of each of the slender structure components are formulated 

from the same set of governing equations. The free-body diagram for a 

differential segment of the slender structure with initial unstretched 

length 𝑑𝑠 at position �⃗⃗� is shown in Fig. 2. The position vector �⃗⃗� is a 

function of the distance along the blade structure (𝑠) and time (𝑡). 

Fig. 2: The free-body diagram for segment 𝑑𝑠  at position �⃗⃗�  with the 

global Cartesian coordinate system (𝑖,̂ 𝑗̂, �̂�)  and the local Lagrangian 

coordinate system (�̂�, �̂�, �̂�) . The internal force is denoted by �⃗⃗� , the 

internal momentum denoted by �⃗⃗⃗�, and the external force is denoted by 

�⃗�. 

 

The governing equations for the dynamics of the segment are given by 

 

𝜌
𝜋𝑑2

4
(

𝜕�⃗⃗⃗�

𝜕𝑡
+ �⃗⃗⃗� × �⃗⃗� ) =

𝜕�⃗⃗�

𝜕𝑠
+ �⃗⃗� × �⃗⃗� + (1 + 𝜖)�⃗�,                                          (3) 

 
1

(1+𝜖)2

𝜕�⃗⃗⃗�

𝜕𝑠
+

1

(1+𝜖)2 �⃗⃗� × �⃗⃗⃗� + (1 + 𝜖)�̂� × �⃗⃗� = 0,                                       (4) 

 

and 

 
𝜕𝜖

𝜕𝑡
�̂� + (1 + 𝜖)�⃗⃗⃗� × �̂� =

𝜕�⃗⃗⃗�

𝜕𝑠
+ �⃗⃗� × �⃗⃗�,                                                        (5) 

 

where 𝜌  is the structure density, 𝑑  is the equivalent diameter of the 

structure, �⃗⃗� = 𝑢�̂� + 𝑣�̂� + 𝑤�̂�  is the velocity of the segment, �⃗⃗⃗�  is the 

angular velocity of the local Lagrangian coordinate system with respect 

to the global Cartesian coordinate system, �⃗⃗� = 𝑇�̂� + 𝑆𝑛�̂� + 𝑆𝑏�̂� is the 

internal force including tension and shear, 𝜖  is the strain, �⃗�  is the 

external force, �⃗⃗⃗� = 𝑀𝑡�̂� + 𝑀𝑛�̂� + 𝑀𝑏�̂� is the internal momentum, and 

�⃗⃗� = 𝛺1�̂� + 𝛺2�̂� + 𝛺3�̂� is the Darboux vector interoperating the torsion 

and curvature of the structure. The relationship between �⃗⃗⃗�  and �⃗⃗�  is 

given by 𝑀𝑡 = 𝐺𝐼𝑝𝛺1, 𝑀𝑛 = 𝐸𝐼𝛺2, and 𝑀𝑏 = 𝐸𝐼𝛺3, where 𝐺𝐼𝑝 is the 

torsional stiffness and 𝐸𝐼 is the bending stiffness of the structure. The 

tension 𝑇 and the strain 𝜖 are related by the tension-strain relation, where 

𝜖 = 𝑇/(𝐸𝜋𝑑2/4)  and 𝐸𝜋𝑑2/4  is the axial stiffness. The angular 

velocity �⃗⃗⃗� and Darboux vector �⃗⃗� are obtained by 

 

[
0
�⃗⃗⃗�

] = 𝑩−1 ∙
𝜕�⃗⃗⃗�

𝜕𝑡
                                                                                       (6) 

 

and 

 

[
0

�⃗⃗�
] = 𝑩−1 ∙

𝜕�⃗⃗⃗�

𝜕𝑠
,                                                                                       (7) 

 

respectively, where, 

 

𝑩 =
1

2
[

𝛽0 −𝛽1

𝛽1 𝛽0

−𝛽2 −𝛽3

−𝛽3 𝛽2

𝛽2 𝛽3

𝛽3 −𝛽2

𝛽0 −𝛽1

𝛽1 𝛽0

]                                                              (8) 

 

and 𝑩−1 = 4𝑩𝑇 . Removing the terms involving time, the governing 

equations can be reduced to the case for static equilibrium. 

 

External Forces. The external forces include weight, buoyancy and 

hydrodynamic drag and added mass. The weight and buoyancy of the 

segment are given by �⃗⃗⃗⃗� = −𝜌𝑔𝜋𝑑2/4 �̂�  and �⃗⃗� = 𝜌𝑤𝑔𝜋𝑑2/4�̂� , 

respectively, where 𝑔  is the gravitational acceleration and 𝜌𝑤  is the 

water density. Based on Morison equations (Morison, 1950), the 

hydrodynamic forces can be expressed in drag forces (�⃗�𝑑), added mass 

forces (�⃗�𝑎), and virtual buoyancy (Froude–Krylov force, �⃗�𝑣). Given the 

flow velocity �⃗⃗�𝑤 = 𝑢𝑤 �̂� + 𝑣𝑤�̂� + 𝑤𝑤�̂� , the hydrodynamic forces are 

expressed as 

 

�⃗�𝑑 = −
1

2√1+𝜖
𝜌𝑤𝑑𝜋𝐶𝑑𝑡|𝑢 − 𝑢𝑤|(𝑢 − 𝑢𝑤) �̂� −

1

2√1+𝜖
𝜌𝑤𝑑𝐶𝑑𝑛√(𝑣 − 𝑣𝑤)2 + (𝑤 − 𝑤𝑤)2(𝑣 − 𝑣𝑤)�̂� −

1

2√1+𝜖
𝜌𝑤𝑑𝐶𝑑𝑛√(𝑣 − 𝑣𝑤)2 + (𝑤 − 𝑤𝑤)2(𝑤 − 𝑤𝑤)�̂�,                            (9) 

 

�⃗�𝑎 = −
𝜌𝑤𝜋𝑑2𝐶𝑎

4(1+𝜖)

𝜕(𝑣−𝑣𝑤)

𝜕𝑡
�̂� −

𝜌𝑤𝜋𝑑2𝐶𝑎

4(1+𝜖)

𝜕(𝑤−𝑤𝑤)

𝜕𝑡
�̂�,                                        (10) 

 

and 

 

�⃗�𝑣 = 𝜌𝑤
𝜋𝑑2

4

𝜕𝑢𝑤

𝜕𝑡
�̂� + 𝜌𝑤

𝜋𝑑2

4

𝜕𝑣𝑤

𝜕𝑡
�̂� + 𝜌𝑤

𝜋𝑑2

4

𝜕𝑤𝑤

𝜕𝑡
�̂�,                                   (11) 

 

where 𝐶𝑑𝑡 and 𝐶𝑑𝑛 are the drag coefficients, and 𝐶𝑎 is the added mass 

coefficient. 

 

Boundary Conditions 

 

Anchors. Anchor positions at the end of the mooring lines are modeled 

as simple-supported nodes where the displacement, velocity and 

momentum are 0⃗⃗. 

 

Buoys.  Buoys are modeled as rigid bodies. The supporting line is 

assumed to be hinged at the center of the buoy so that the momentum 

transformation is ignored. The motion of the buoy is governed by 

𝑚𝐵
𝑑�⃗⃗⃗�𝐵

𝑑𝑡
= �⃗⃗⃗⃗�𝐵 + �⃗⃗�𝐵 + �⃗�𝑑𝐵 + �⃗�𝑎𝐵 + �⃗�𝑣𝐵 − �⃗⃗�𝐵,                                              (12) 

where 𝑚𝐵 is the buoy mass, �⃗⃗�𝐵 is the buoy velocity, �⃗⃗⃗⃗�𝐵 is the weight, 

�⃗⃗�𝐵 is the buoyancy of the buoy, �⃗�𝑑𝐵 is the drag force, �⃗�𝑎𝐵 is the added9 
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mass force, �⃗�𝑣𝐵 is the virtual buoyancy, and �⃗⃗�𝐵 is the internal force of 

the supporting line. The formulas for calculating �⃗�𝑑𝐵, �⃗�𝑎𝐵 and �⃗�𝑣𝐵 are 

referred to Eqs. 9~11. The internal force (�⃗⃗�) of the supporting line at the 

end attached to a buoy is determined by Eq. 12. The velocity of the line 

should be equal to the velocity of the buoy. The momentum is set to be 

0⃗⃗. 

 

Connections. The joint connecting the mooring lines, longline, and 

supporting lines can be assumed rigid or hinged. For rigid connection, 

the displacement and velocity are equal, and the total force and 

momentum are 0⃗⃗ . For hinged connection, the displacements and 

velocities of the lines at the joint are equal, the total force and momentum 

at the joint are both 0⃗⃗ . The connection joining the longline and the 

aquaculture components are assumed to be continuous and the culture 

line assumed to be attached to the longline without momentum 

transformation. Therefore, the displacements and velocities of longline 

and hanging structure are equal, the total force at the joint is 0⃗⃗, the 

momentum and angles of the longline at the joint are equal, and the 

momentum of the hanging structure is 0⃗⃗. 

 

Differential Equation Solver 

 

The governing equations for each of the aquaculture components are 

coupled into a system of partial differential equations through the 

boundary conditions for connections. The system of partial differential 

equations is discretized using a finite difference method with box method 

scheme (Hoffman and Frankel, 1993; Chatjigeorgiou, 2008). The 

Newton-Raphson iteration method is used to solve the discretized 

nonlinear equations. 

 

DATA COMPARISONS 

 

The model was compared with experiments for flexible blades in both 

steady and oscillatory flow. 

 

Flexible Blades 

 

Steady flow. The cable model developed was used to replicate 

experiments by Dijkstra and Uittenbogaard (2010) in steady flow. The 

top end of the model blades was clamped. The dimensions of the cross-

section of the blades as well as the physical properties are shown in Table 

1. 

 

Table 1. Geometrical and physical properties of the model blades 

(modified from Table 1 of Dijkstra and Uittenbogaard, 2010). 

 

Blade Very flexible (FR) Tie wrap (TW) 

Material PVC Nylon 66 

𝐸 (N m-2) 1.60 × 109 1.06 × 109 

Thickness (mm) 0.178 1.009 

Width (mm) 5.0 4.8 

𝐼 (m4) 2.30 × 10−15 4.11 × 10−13 

Density (kg m-3) 975 1080 

 

In both the model and experiment, the blade is fixed at the top end and 

suspended in the water. Blades having lengths of 0.127, 0.177 and 2.27 

m were simulated at the flow velocities of 0.02, 0.05, 0.081, 0.114, 0.183, 

0.250, 0.318, and 0.386 m/s. To compare with the simulations by Dijkstra 

and Uittenbogaard (2010), the same drag coefficients are used in the 

cable model. The drag coefficients are given by (Hoerner, 1965; Dijkstra 

and Uittenbogaard, 2010) 

𝐶𝑑𝑡 = 0.018𝑓 sin 𝜆,                                                                               (13) 

 

and 

 

𝐶𝑑𝑛 = min(2 cos 𝜆 + 0.1 tan 𝜆 , 2𝜋),                                                       (14) 

 

where, 𝑓 is the ratio between the wetted area and the cross section and 

set as 2.8 to be the same in Dijkstra and Uittenbogaard (2010), and 𝜆 is 

the angle between the blade and the vertical direction. 

 

To quantify the performance of the numerical simulations, the difference 

between simulated and observed postures are introduced. The distance 

between the simulated point (𝑥𝑖 , 𝑧𝑖) of the 𝑖th segment along the blade 

and the corresponding observed point (𝑥𝑜𝑖 , 𝑧𝑜𝑖) is defined as 

 

𝑑𝑖 = √(𝑥𝑖 − 𝑥𝑜𝑖)2 + (𝑧𝑖 − 𝑧𝑜𝑖)2.                                                          (15) 

 

Therefore, the spatial averaged difference along the blade length 

normalized by the blade length (𝐿) can be obtained 

 

〈𝑑〉̃ = ∑ 𝑑𝑖
𝑛
1 /𝑛𝐿,                                                                                            (16) 

 

where, 𝑛 is the number of segments, which is determined by the number 

of measured points. The posture comparisons are shown in Fig. 3 and the 

corresponding 〈𝑑〉̃s are show in Fig. 4. 

 

 
Fig. 3: Posture comparisons for (a~d) very flexible blade (FR) and (e~h) 

tie wraps (TW) with different lengths at four velocities. The lengths are 

0.127, 0.177, and 0.227 m and denoted by magenta, red and blue, 

respectively. The measured data is denoted by crosses, circles, and 

diamonds, respectively. The simulations by Dijkstra and Uittenbogaard 

(2010) are denoted by dashed lines while the simulations by present 
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model are denoted by solid lines.  

 

 
Fig. 4: The spatial averaged difference between the simulated postures 

and the observed postures for (a~b) tie wraps (TW) and (c~e) very 

flexible blade (FR) with different lengths. The lengths are 0.127, 0.177, 

and 0.227 m and denoted by magenta, red and blue, respectively. The 

〈𝑑〉̃ simulations by Dijkstra and Uittenbogaard (2010) are denoted by 

dashed lines while that by the cable model are denoted by solid lines.  

 

The cable model simulations show good agreement with the data with 

〈𝑑〉̃ < 0.05 except for the 0.177 and 0.127 m-long FR blades at the flow 

velocity of 0.02 m/s with 〈𝑑〉̃=0.07 (Fig. 4d) and 〈𝑑〉̃=0.09 (Fig. 4e), 

respectively. The 〈𝑑〉̃ produced by the cable model simulation is smaller 

than that by Dijkstra and Uittenbogaard (2010) except for the 0.227 m-

long FR blade at the flow velocity of 0.05 m/s and 0.081 m/s, where the 

〈𝑑〉̃ by cable model is slightly larger by 0.001 and 0.002, respectively, as 

shown in Fig. 4(c). Overall, the present model works well for simulating 

blade flexibility in steady flow. 

 

Oscillatory flow. Model simulations were also conducted to examine 

performance with oscillatory flow results from experiments described in 

Leclercq and de Langre (2018). In the physical model experiments, 

rectangular blades were cut from plastic sheets with a mass density of 

895 kg m-3. The blades were 0.2 m long, 0.02 m wide and 0.49 mm thick. 

The blade was clamped to a device that capable of oscillatory 

translations. The oscillatory translation moved in the horizontal direction 

with an amplitude of 𝐴 and angular frequency of 𝜎. The relative flow 

velocity (𝑢𝐻𝑖�̂�) is in the opposite direction of the oscillatory translation 

such that 𝑢𝐻 = −𝐴𝜎 sin 𝜎 𝑡. The amplitude and angular frequency are 

normalized by the blade length (𝐿) and the natural frequency of the blade 

( 𝑇𝑠 ), respectively, such that �̃� = 𝐴/𝐿  and �̃� = 𝜎𝑇𝑠 , where 𝑇𝑠 =

𝐿2√𝑚𝑎/𝐸𝐼  and 𝑚𝑎  is added mass per unit length. The amplitude 𝐴 

ranges from 0.054 to 0.130 m and the frequency ranges from 0.21 to 1.08 

Hz such that �̃� = 0.27~0.65 and �̃� = 2.3~12. The added mass per unit 

length is 𝑚𝑎 = 0.314 kg/m. The drag coefficient 𝐶𝑑𝑛 is selected as 2 to 

be the same with Leclercq and de Langre (2018). 

 

Simulations were conducted to replicate the oscillatory tests to assess the 

performance of the cable model for oscillatory flow. The amplitude of 

the blade tip end (�̃�tip ) normalized by the blade length along �̃� is shown 

in Fig. 5(a). For small-amplitude oscillatory flow with �̃� = 0.27, The 

root-mean-square-error (rmse) of the simulations by cable model is 

0.016, compared to that from Leclercq and de Langre (2018) with 

rmse=0.020. While for large-amplitude oscillatory flow with �̃� = 0.65, 

the simulations by the cable model show a rmse=0.028. The rmse value 

could be attributed to the assumption of a constant drag coefficient. The 

drag coefficient should be reduced in a large-amplitude oscillatory flow 

while increased in a small-amplitude oscillatory flow. The selected tip 

excursions are compared for case A with �̃� = 0.27, �̃� = 0.23 (Fig. 5b) 

and case B with �̃� = 0.65, �̃� = 12 (Fig. 5c). The measured tip excursion 

for case A is asymmetric while the simulation by the cable model is more 

symmetric. For case B, the simulation of the tip excursion is in the similar 

amplitude with the measured tip excursion, but lower in the vertical 

direction. However, the model captures the characteristics of the tip 

excursion, which shows a figure eight (“∞”). 

 

 
Fig. 5: Comparisons for the (a) amplitude of the deflection at the tip 

(�̃�tip ) and (b-c) the tip excursions for case A (�̃� = 0.27, �̃� = 0.23) and 

case B (�̃� = 0.65, �̃� = 12). In (b) and (c), the measured tip excursion is 

denoted by black circles and the simulated tip excursion is denoted by 

red solid line. 

 

CASE STUDY 
 

Kelp Aquaculture Systems 

 

A case study was conducted using parameters from a kelp longline that 

was deployed near Wood Island in the State of Maine, US, as shown in 

Fig. 6. The longline was 60 meters long, but only 30 meters kelp was 

grown on the western portion of the system. The general dimensions of 

the longline system and the detail component particulars are shown in 

Fig. 7. The water level for the initial configuration of the longline system 

was set at 8 m from in-situ measurements. 

 

 
Fig. 6: Study site for the kelp longline system (modified from google 

satellite map). The approximated location of the kelp longline system is 

marked as yellow bar. 

 

The kelp model employed in the computer program represents an 

aggregate of blades per meter of longline. The modulus E was obtained 

by performing cantilever beam tests of kelp samples with measured tip 

deflections and second area moment calculated values of the measured 

cross-sections. These characteristics were obtained from 41 kelp 

subsamples taken from three locations along five separate blade samples. 

The geometric and material properties of the components are shown in 
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Table 2. Each component is modeled as a slender structure with the same 

length and an effective diameter such that the volumes are equal. This 

method matches the weight and buoyancy but changes the hydrodynamic 

properties. Work is presently being conducted to develop the “kelp” 

model. To show the utility of the modeling framework, however, general 

hydrodynamic coefficients of 𝐶𝑑𝑛 = 1.2 and 𝐶𝑑𝑡 = 0.01 are employed. 

The added mass coefficient is assumed to be 𝐶𝑎 = 1. 

 
Fig. 7: General dimensions of the kelp longline system as well as the 

detail components. All the dimensions are in meters. The joint P connects 

the longline, the right corner buoy line and the mooring line. 

 

Table 2. Geometrical and physical properties of the components. 

 

 
Length 

𝑙 (m) 

Effective 

Diameter 

𝑑 (m) 

Density 

𝜌 (kg/m3) 

Modulus 

𝐸 (Pa) 

Anchor chains 4.5 0.02 7850 1.8×1011 

Mooring lines 30 0.01 1150 4×109 

Long-lines 60 0.01 1150 4×109 

Buoy lines 2 0.01 1150 4×109 

Inner buoys 0.30 0.18 128 - 

Corner buoys 0.35 0.29 80 - 

Weight disks 0.15 0.18 2400 - 

Kelp 0.43 0.14 1058 7.42×106 

 

Tidal Currents  
 

The currents and water level were measured with an Acoustic WAve and 

Current (AWAC) profiling instrument. The instrument was set to 

measure only profiles at 0.5-meter bins. The east-going velocity 

component parallels to the longline dominates as shown in Fig. 8. To 

investigate the influences of the water level and currents, several cases 

were conducted with changing water levels associated with east-going 

velocities and north-going velocities of the currents. 

 

Results and Discussions 

 

Simulations were performed with the AWAC data and system 

configuration (with kelp) parameters as input for the four cases WL 

(water level), WLEV (water level with east-going velocity), WLNV 

(water level with north-going velocity), and WLC (water level with 

currents). Selected reconfigurations of the longline system in one tidal 

cycle are shown in Fig. 9. The longline tension at the joint P associated 

with the displacements are shown in Fig. 10. The joint P connects the 

longline, right corner buoy line and mooring as shown in Fig. 7 and Fig. 

9. 

 

The tension follows the water level with smaller values at low tide and 

larger values at high tide. With an increasing submerged length of the 

buoys from low tide to high tide, the buoyancy increases such that the 

tension of the longline increases correspondingly. As shown in Fig. 10a, 

the tension for the first high tide with a water depth of 7.8 m at time t1 

(Fig. 10a) is 218 N while the tension for the following high tide with a 

water depth of 8.3m at time t2 is 457N. The latter tension is more than  

 
Fig. 8: Time series of (a) east-going velocity and (b) north-going velocity 

along water depth. The water level is denoted by black line. 

 

 
Fig. 9: Reconfigurations of the kelp longline system in one tidal cycle. 

 

twice of the former although the water depth increases slightly by 0.5 m 

compared with the tidal range of 3.9 m. Because the longline system is 

tensioned at the initial configuration with a water depth of 8 m, the 

tension is more sensitive to water level change in high tide when the 

water depth is larger than the initial water depth. This suggests that the 

tension could increase dramatically in tidal surge. The east-going 

velocity has little influence on the tension. However, the north-going 

velocity perpendicular to longline impacts the tension significantly, 

especially during ebbing when the longline system become less 
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tensioned. For example, the tension with the north-going velocity 

(WLNV and WLC) is more than twice than that without north-going 

velocity (WL and WLEV) around the time of 7:00 on May 18th, as shown 

in Fig. 10a. 

 

 
Fig. 10: (a) Tension (𝑇) of the longline at joint 𝑃  that connects the 

longline, right corner buoy line and mooring line. (b) The east-west 

displacement (x), (c) the north-south displacement (y) and (d) the vertical 

displacement (z) of joint P. The results for cases WL (water level), 

WLEV (water level with east-going velocity), WLNV (water level with 

north-going velocity), and WLC (water level with currents) are denoted 

by red solid lines, magenta dash-dotted lines, cyan dotted lines, and blue 

dashed lines, respectively. The water level is denoted by black solid line. 

The vertical black dashed lines indicate time t1 and t2 for the high tides. 

 

The three components of the displacements of the joint P demonstrate 

different patterns as shown in Fig. 10(b~d). The east-west displacement 

(x) is less impacted from the currents in high tide because the longline 

system is high tensioned. The influence of the north-going velocity on 

the east-west displacement is small compared with that from the east-

going velocity. The north-south displacement is 0 without north-going 

velocity components but significantly with north-going velocity. 

Following north-going velocity, the north-south displacements show a 

phase shift with the water level. Compared with the east-west 

displacement in the magnitude of decimeters, the north-south 

displacement has a magnitude in meters. The deflection of the longline 

is more serious under the action of the non-parallel velocity. The vertical 

displacements follow the water level without influence from the currents 

because the vertical component of water velocity is 0 and the joint moves 

with the buoy following water level. 

 

CONCLUSIONS 

 

A 3D cable model was developed to simulate the large deflection 

characteristics of culture line structures that can consist of shellfish or 

macroalgae. Simulation results were compared with experiments for 

suspended flexible blades in both steady and oscillatory flow. The 

coupled 3D model was then used to investigate the dynamic performance 

of a longline system in tidal currents. Results show that the tension 

increases with water level to a peak at high tide. The tension could 

increase dramatically when the water level exceeds the initial water 

depth at which the longline system is deployed. This suggests that the 

longline system could face a high risk of failure in high water level such 

as tidal surge and waves. The results also demonstrate that the non-

parallel currents not only increase the tension but also enhance the 

deflection of the longline system. To improve the performance, the 

longline system should be deployed parallel to the direction of dominated 

velocity. The future work will focus on the model comparison with the 

field data and the influences of the initial configuration on the dynamics 

of the longline system. 
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